Markahan an IC Advances in Chine (ICA

Workshop on IC Advances in China (ICAC)

A Fully Dynamic Low-Power Wideband Time-Interleaved Noise-Shaping SAR ADC

Haoyu Zhuang¹ and Nan Sun²

¹University of Electronic Science and Technology of China, Chengdu, China ²Tsinghua University, Beijing, China

6/23/2022

Outline

- Motivation
- Review of Prior Work
- Proposed TI NS SAR ADC
- Measurement Results
- Conclusions

Motivation

- SAR ADC
 - <u>Advantages</u>: simple, mostly digital, scaling friendly, power efficient ©
 - <u>Disadvantages</u>: difficult to achieve high resolution \mathfrak{S}
- ΔΣ ADC
 - Advantages: high resolution, simple quantizer ③
 - <u>Disadvantages</u>: require OTA, power hungry, scaling unfriendly 😕

Motivation

- Noise-Shaping (NS) SAR ADC
 - A hybrid of SAR and $\Delta\Sigma$ ADC
 - Advantages: high resolution, high energy efficiency 🙂
 - <u>Disadvantages</u>: slow quantizer, limited bandwidth 😕

Motivation

- Time-Interleaved (TI) NS SAR ADC
 - <u>Advantages</u>:
 - ✓ Wideband applications ☺
 - \checkmark Higher energy efficiency (than pipelined or CT $\Delta\Sigma$ ADCs) $\textcircled{\odot}$
 - Insensitive to channel mismatch
 - <u>Disadvantages</u>: TI for NS SAR is non-trivial 😕

TI for NS SAR is Non-Trivial

Dependency on <u>quantization error memory</u>

1) Single-channel NS SAR ADC: $NTF = 1 - z^{-1}$

TI for NS SAR is Non-Trivial

TI for NS SAR is Non-Trivial

- To achieve the same SNR, much higher OSR is required.
- Inefficient noise shaping effect.

Outline

- Motivation
- Review of Prior Work
- Proposed TI NS SAR ADC
- Measurement Results
- Conclusions

Prior TI NS SAR Work

• Prior TI NS SAR [L. Jie ISSCC 2019]

Share guantization error memory in all the channels 🙂

Similar to single-channel NS SAR 🙂

 $NTF(z) = (1 - 0.5z^{-1})^4$

Prior TI NS SAR Work

- ➢ EF-based architecture ☺
- Static amplifier (power hungry, always active) (accounts for 45% of the total power) (3)
- ➤ Amplifier gain is PVT-sensitive ☺
- > NTF zeros at 0.5 (far away from 1) 😕

Outline

- Motivation
- Review of Prior Work
- Proposed TI NS SAR ADC
- Measurement Results
- Conclusions

- CIFF: Cascade of Integrators with Feed-Forward
 - \checkmark Simple, fully-dynamic, low-power, wide-band $\textcircled{\odot}$
 - ✓ No static amplifiers ③
 - Only dynamic comparators \bigcirc
 - $\checkmark\,$ Low-duty-cycle summing comparator $\textcircled{\odot}$
 - $\checkmark\,$ NTF set by device ratios, highly robust $\textcircled{\odot}$
 - $\checkmark\,$ NTF zeros at 0.75 (closer to 1) $\odot\,$
 - ✓ Low-duty-cycle sensor applications ☺

- Way of Interleaving
 - ✓ Share the integrated residuals V_{int1} and V_{int2} in all the channels
 - ✓ Comp2 sums the integrated residuals with the CDAC residual V_{res} .

The comparator power consumption is 2.2 times smaller than the static amplifier + comparator power consumption of [L. Jie *ISSCC 2019*].

Step 1 in Channel <1>

Comp1 determines the first 8 bits (10-bit CDAC with 2 redundant bits)

Step 2 in Channel <1>

$$V_{int1}(z) = \frac{0.25z^{-1}}{1 - 0.75z^{-1}} V_{res}(z)$$

The C_{DAC} of previous channel shares charges with C_{int1} of all the three channels. (C_{int1} of all the three channels are connected.)

Step 3 in Channel <1> $V_{int2}(z) = \frac{0.25}{1 - 0.75z^{-1}}V_{int1}(z) = \frac{0.25^2z^{-1}}{(1 - 0.75z^{-1})^2}V_{res}(z)$

The C_{DAC} of previous channel shares charges with C_{int2} of all the three channels. (C_{int2} of all the three channels are connected.)

Step 4 in Channel <1>

Comp2 determines the last 4 bits. Channel isolation reduces the interference between channels.

Step 4 in Channel <1>

$$V_{int1}(z) = \frac{0.25z^{-1}}{1 - 0.75z^{-1}} V_{res}(z)$$
$$V_{int2}(z) = \frac{0.25^2 z^{-1}}{(1 - 0.75z^{-1})^2} V_{res}(z)$$

- <u>Gain Loss Exists</u>
- ✓ Comparator result is a 1-bit sign.
- ✓ What is needed here is a relative gain between V_{res} and V_{int1} , V_{int2} .
- Can be easily implemented by sizing the comparator input transistors.

Signal Flow Diagram Assume
$$C_{int1} = aC_{DAC}/3$$
, $C_{int2} = aC_{DAC}/3$

$$D_{out}(z) = V_{in}(z) + \frac{\left(1 - \frac{a}{1+a}z^{-1}\right)^2}{1 + \frac{(1+a)g_1 + g_2 - 2a(1+a)}{(1+a)^2}z^{-1} + \frac{-ag_1 + a^2}{(1+a)^2}z^{-2}}{(1+a)^2}Q(z)$$

$$g_1 = a, g_2 = a(1+a) \Rightarrow D_{out}(z) = V_{in}(z) + \left(1 - \frac{a}{1+a}z^{-1}\right)^2Q(z)$$

$$g_1 = 3, g_2 = 12 \Rightarrow D_{out}(z) = V_{in}(z) + (1 - 0.75z^{-1})^2Q(z)$$

Accuracy of Noise Transfer Function

$$D_{out}(z) = V_{in}(z) + \frac{\left(1 - \frac{a}{1+a}z^{-1}\right)^2}{1 + \frac{(1+a)g_1 + g_2 - 2a(1+a)}{(1+a)^2}z^{-1} + \frac{-ag_1 + a^2}{(1+a)^2}z^{-2}}Q(z)$$

• Zero locations: a/(1+a)

- Determined by capacitor ratio C_{int}/C_{DAC}
- PVT insensitive
- Pole locations related to:
 - *a* (PVT insensitive)
 - g_1 and g_2 (PVT insensitive?)

Accuracy of g_1 and g_2

- V_{th} mismatch of input transistor:
- Without mismatch
- g_1 and g_2 are robust against PVT
- With differential-mode mismatch,
 i.e. V_{th_left} ≠ V_{th_right}
- Only result in comparator offset
- Do not affect g_1 and g_2
- With common-mode mismatch, i.e. $(V_{th_left} + V_{th_right})/2$ varies
- Affect g_1 and g_2

Effect of g_1 and g_2 Variations

- With the source of input pairs separated, we have $|\Delta SNR| < 0.1 dB$.
- The proposed TI NS SAR ADC is highly robust.

Outline

- Motivation
- Review of Prior Work
- Proposed TI NS SAR ADC
- Measurement Results
- Conclusions

Measurement Results

- 40nm CMOS process
- 380μm×330μm
- Sampling rate: 400MS/s
- Supply: 1.1V
- Power consumption: 8.5mW

Measured Output Spectrum

Measured SNR/SNDR and Power

Measured SNDR and FoM vs. OSR

 The best FoM_w is at OSR of 6, where FoM_w is 32.1 fJ/conv.-step and SNDR is 73.7 dB.

Performance Comparisons

	This work		[7]	[8]	[9]
Architecture	TI NS SAR (CIFF-based)		TI NS SAR (EF-based)	CT ΔΣ	CT ΔΣ
Fully-Dynamic	Yes		No	No	No
NTF Set by Device Ratio	Yes		No	No	No
Technology (nm)	40		40	65	28
Area (mm ²)	0.125		0.061	0.07	0.25
Supply Voltage (V)	1.1		1	1.4	1.2/1.5
Power (mW)	8.5		13	13.3	64.3
Sampling Rate (MS/s)	400		400	6000	2000
OSR	4	6	4	50	20
Bandwidth (MHz)	50	33.3	50	60	50
SNDR (dB)	69.1	73.7	70.4	67.6	79.8
FoM _w (fJ/convstep)	36.3	32.1	48.1	56.5	80.5

Conclusions

- A novel TI NS SAR based on the CIFF architecture
- Simple, fully-dynamic, low-power, and wide-band
- Static amplifiers are replaced by dynamic comparators, saving energy
- Dynamic summing comparator is only active 1/5 of the time, further saving energy
- It eliminates the dependence of NTF on the amplifier gain that is PVT sensitive
- Its NTF is set by device ratios and highly robust against PVT variations
- NTF zeros at 0.75 are closer to 1 with better NS effect
- Well suited for low-duty-cycle sensor applications

References

- [1] Haoyu Zhuang, et al., "A Fully Dynamic Low-Power Wideband Time-Interleaved Noise-Shaping SAR ADC," *IEEE Journal of Solid-State Circuits*, vol. 56, no. 9, pp. 2680-2690, April 2021.
- [2] Haoyu Zhuang, et al., "A Second-Order Noise-Shaping SAR ADC With Passive Integrator and Tri-Level Voting," *IEEE Journal of Solid-State Circuits*, vol. 54, no. 6, pp. 1636-1647, March 2019.

