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Motivation

* SAR ADC

- Advantages: simple, mostly digital, scaling friendly, power efficient ©

- Disadvantages: difficult to achieve high resolution ®

* A2 ADC

- Advantages: high resolution, simple quantizer ©

- Disadvantages: require OTA, power hungry, scaling unfriendly ®




Motivation

* Noise-Shaping (NS) SAR ADC
- A hybrid of SAR and A2 ADC
- Advantages: high resolution, high energy efficiency ©

- Disadvantages: slow quantizer, limited bandwidth ®
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Motivation

* Time-Interleaved (TI) NS SAR ADC
- Advantages:

v Wideband applications ©

v Higher energy efficiency (than pipelined or CT AZ ADCs) ©
v Insensitive to channel mismatch ©

- Disadvantages: Tl for NS SAR is non-trivial ®




Tl for NS SAR is Non-Trivial

* Dependency on guantization error memory

(1) Single-channel NS SAR ADC: NTF =1 —z"1

NS SAR:
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(2) TI NS SAR ADC:
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Tl for NS SAR is Non-Trivial
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Tl for NS SAR is Non-Trivial
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- To achieve the same SNR, much higher OSR is required.

- Inefficient noise shaping effect.
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Prior TI NS SAR Work
* Prior TI NS SAR [L. Jie ISSCC 2019]

Share quantization error memory in all the channels ©

Similar to single-channel NS SAR ©
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Prior TI NS SAR Work
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> EF-based architecture ®
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» Static amplifier (power hungry, always active) ®
(accounts for 45% of the total power) ®

> Amplifier gain is PVT-sensitive ®
» NTF zeros at 0.5 (far away from 1) ®
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Proposed TI NS SAR with CIFF-based Architecture

* CIFF: Cascade of Integrators with Feed-Forward

v Simple, fully-dynamic, low-power, wide-band ©
v No static amplifiers ©

v" Only dynamic comparators ©

v Low-duty-cycle summing comparator ©

v NTF set by device ratios, highly robust ©

v NTF zeros at 0.75 (closerto 1) ©

v Low-duty-cycle sensor applications ©



Proposed TI NS SAR with CIFF-based Architecture
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Proposed TI NS SAR with CIFF-based Architecture

vV, From Comp1 From Comp2 C(,mpl power iS
Vi orns 7 ’ ]

refpc

Vrefm } l‘f‘ :l{ &Eq } &Eq Lt &\lq &lq &lq &lq Y &lq &lq &lq &L\l\' ‘f> Ztimes smaller

Vi i_ LComp1 thdn Comp2
V. _ .<1:3>— = et
Vi;etj<1:3>_ Vress_l_ —~ MUX[—D,,;

V, Vv,
Passive _'E i itz |_ 3

=C C. .,=C fcomp2| 3-bath
integrators Cintr= int2 .
Channel <1> g = JT: b2  SUMming

Channel <2> comparator
Channel <3> _O_Lm 2

¢ns1<1> cDns1<2> ¢ns1<3>
oo Vint1<;> oo Vint1<;>
oo\, <2> oto—V, L <Z>

Tor Vint1 <3> <3>

res <1>




Proposed TI NS SAR with CIFF-based Architecture

* Way of Interleaving
v" Share the integrated residuals V,,, and V, ,, in all the channels

v Comp2 sums the integrated residuals with the CDAC residual V...

5 Next Conversion of Ch.<1> (Delayed by 3)
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The comparator power consumption is 2.2 times smaller than the static
amplifier + comparator power consumption of [L. Jie ISSCC 2019].




Proposed TI NS SAR with CIFF-based Architecture
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Step 1 in Channel <1>

Compl determines the first 8 bits
(10-bit CDAC with 2 redundant bits)
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0.25z71
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Step 4 in Channel <1>
Comp2 determines the last 4 bits.

Channel isolation reduces the interference between channels.
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Step 4 in Channel <1>
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- @Gain Loss Exists

, o Vies ¥ 91Vint1 + 92Vine2
v Comparator result is a 1-bit sign.

v What is needed here is a relative gain between V_,.and V, ,;, V. ..,.

v Can be easily implemented by sizing the comparator input transistors.




Signal Flow Diagram  "s°UMe Cint1 = aCpac/3, Cintz = aCpac/3
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Accuracy of Noise Transfer Function

(1 1 -Cll- aZ_l)Z

(1 +a)g, + g, —2a(l + a)
(1+ a)?

Doyt (2) = Vin(2) + Q(2)

—ag, + a? 52

-1
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® Zero locations: a/(1 + a)
- Determined by capacitor ratio Ci,:/Cpac
- PVT insensitive

® Pole locations related to:

- a (PVT insensitive)

- gy and g, (PVT insensitive?)




Accuracy of g4 and g,

Ve, mismatch of input transistor:

® \Without mismatch

- g1 and g, are robust against PVT

e With differential-mode mismatch,
i.e. Vin tefrt # Vin rignt

—  Only result in comparator offset

- Do not affect g; and g,

e With common-mode mismatch,
i.e. (Vth_left + Vth_right)/Z varies

- Affect g, and g,




Accuracy of g4 and g,

Monte-Carlo Simulation
with 1000 cases:
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Effect of g, and g, Variations

60
® O =18.02
S40F 0=0.028
SNR improvement S
from NS: « 30
(source of input £ ,,1
pairs separated) 2
10

17.95 18 18.05 18.1
SNR Improvement

- With the source of input pairs separated, we have |ASNR| < 0.1dB.
- The proposed Tl NS SAR ADC is highly robust.
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Measurement Results -
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Sampling rate: 400MS/s
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Measured Output Spectrum
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Measured SNR/SNDR and Power
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Measured SNDR and FoM vs. OSR
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® The best FoM,, is at OSR of 6, where FoM,, is 32.1 fl/conv.-step and
SNDR is 73.7 dB.




Performance Comparisons

This work [7] [8] [9]
Architecture (C-I;IF?_%:?;) (-|r5||:l.\lbsa§é§) CT A2 CT A2
Fully-Dynamic Yes No No No
NTF Set by Device Ratio Yes No No No
Technology (nm) 40 40 65 28
Area (mm?2) 0.125 0.061 0.07 0.25
Supply Voltage (V) 1.1 1 1.4 1.2/1.5
Power (mW) 8.5 13 13.3 64.3
Sampling Rate (MS/s) 400 400 6000 2000
OSR 4 6 4 50 20
Bandwidth (MHz) 50 33.3 50 60 50
SNDR (dB) 69.1 73.7 70.4 67.6 79.8
FoM,, (fJ/conv.-step) 36.3 32.1 48.1 56.5 80.5




Conclusions

A novel TI NS SAR based on the CIFF architecture

Simple, fully-dynamic, low-power, and wide-band

Static amplifiers are replaced by dynamic comparators, saving energy

Dynamic summing comparator is only active 1/5 of the time, further saving energy
It eliminates the dependence of NTF on the amplifier gain that is PVT sensitive

Its NTF is set by device ratios and highly robust against PVT variations

NTF zeros at 0.75 are closer to 1 with better NS effect

Well suited for low-duty-cycle sensor applications
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