A 13-Bit ENOB Third-Order Noise-Shaping SAR ADC Employing Hybrid Error Control Structure and LMS-Based Foreground Digital Calibration

Jing Li (李靖)

Email: lijing686@uestc.edu.cn

University of Electronic Science and Technology of China

电子薄膜与集成器件国家重点实验室

State Key Laboratory of Electronic Thin Films and Integrated Devices

Outline

- Background
- Proposed Hybrid Noise-Shaping SAR ADC
- Foreground Capacitor Mismatch Calibration
- Measurement Results
- Conclusion

Background

- ✓ Pros of NS SAR ADC
 - SAR ADC: Low Power
 - Sigma-Delta ADC: High Resolution
- ✓ Process of Quantization
 - Conversion $\rightarrow V_{res}$ Filtering \rightarrow Signal Summation 李靖, 电子科技大学

NS Filter Order >3

Background

CIFF:

- Integrator Composed IIR Filter
- Summed With Input Signal At The Input of Comparator
- NTF=1/(1+IIR(z))
- ✓ Stable and Robust
- More Active/Passive Integrator
- Power Hungry and Complex

♦EF:

- SC-Based FIR
- Summed with The Next Input Signal Directly
- NTF=1-FIR(z)
- ✓ Simple With Delay Cell
- Accurate Gain of Residue Amplifier
- Sensitive to PVT

✓ Combined NTF:
$$NTF_{HEC} = \frac{1 - FIR(z)}{1 + IIR(z)}$$

- ✓ Realized EF And CIFF Together
- ✓ For a Third-Order NS SAR ADC, Filter Order <2 and Simplify The Design
- ✓ More Stable Than Conventional Third-Order IIR/FIR

- ✓ EF Path: Residue Sample (A_{RS}), Residue Amplify (G_{RA}) and SC-Based FIR(A_{CS})
- ✓ EF Path Gain $K_{EF} = A_{RS}G_{RA}A_{CS}$
- ✓ NTF of EF Path: $NTF_{EF} = 1 K_{EF} (z^{-1} 0.5z^{-2})$

✓ CIFF Path: Passive Integrator and 4-input Comparator

✓ Gain Ratio of Signal Path and Integration Path: 1/g, $C_{int} = \frac{1-\beta}{\beta}C_{DAC}$ ✓ CIFF Path NTF: $NTF_{CIFF} = \frac{1}{1+A_{RS}gz^{-1}IIR(z)}$ 李 靖, 电子科技大学

EF+CIFF Noise Transfer Function:

$$NTF = \frac{1 - K_{EF} \times FIR(z)}{1 + gA_{RS}z^{-1} \times IIR(z)} = \frac{(1 - K_{EF} \times (z^{-1} - 0.5z^{-2})) \times (1 - (1 - \beta)z^{-1})}{1 - ((1 - \beta) - \beta gA_{RS})z^{-1}}$$

- ✓ One Pole, Three Zeros
- ✓ Noise Shaping Capability is Dependent With The Positions of Pole and Zeros
- ✓ Need to Optimize The Parameters of β , g, A_{RS} , K_{EF} For The Optimal Dynamic Performance, Area and Power

$$\checkmark$$
 If $g = \frac{1 - \beta}{A_{RS} \times \beta}$, pole $z = 0$

- Zero Position(1-β) is Compromise
 Between Noise Shaping Capability
 and Capacitor Area of C_{int}
- ✓ Left-Plane Pole is Good for Noise Shaping

靖, 电子科技大学

李

1.9

1.8

46

48

50

*G*_{*RA*} (**d**)

52

54

0.72

0.71

56

✓ Left-plane Pole z=-0.3 is
 Realized When Comparator
 Gain of 4

Notch is Found Around BW,
 Shows Better Noise Shaping
 Performance

[1] W. Guo. et.al, *ESSCIRC* 2016.[2] Q. Zhang, *IEEE T-VLSI* 2021.

✓ 8+2b DAC, C_{R2} and C_{R1} Are Used to Compensate The Filtered Residues From EF Path

✓ C_D is Used for Dither, Quantize 2 Times for Different Codes
 李 靖, 电子科技大学

✓ EF Path: Residue Sample Cap, RA, Passive SC-Based FIR
 ✓ Close-Loop RA for Accurate Gain

李 靖, 电子科技大学

✓ CIFF Path is Composed by C_{int} and Comparator Integration Path
 ✓ Gm ratio of Multi-Input Comparator for gain

Architecture

李 靖, 电子科技大学

✓ IOS is Used to Store the Offset of OTA and Prevent OTA/ADC Saturation

- ✓ Finite Gain Limits EF Path Gain, But not Degrades SQNR
- ✓ RA Works with DAC Sample and Quantize, Reduce the BW Demand 李 靖, 电子科技大学

- OTA Adopts Feedforward Architecture to
 Generate Left-plane Zero for GBW Improvement
- Gain and GBW Satisfy The Requirement under Corners and Temperature

靖, 电子科技大学 李

Foreground Capacitor Mismatch Calibration

- DWA: The mismatch error has been converted into white noise.
- MES: The usable input range has been greatly reduced.
- Calibration: FFT processor requires a lot of multipliers, which increases the complexity of onchip integration.

[1] D. Lee and T. Kuo, IEEE TCASII, 2007.[2] Y. Shu, et al., IEEE JSSC, 2016.[3] S. M. Chen and R. W. Brodersen, IEEE JSSC, 2006.

Foreground Capacitor Mismatch Calibration

Quantization noise

Mismatch

- LMS Based Algorithm, Each
 Analog Sample Should Be
 Digitized Twice During The
 Foreground Calibration Phase.
- Averaging Filter Used to Suppress The Interference From Quantization Noise.
- ✓ No Multiplier Needed, Low Hardware Cost .

李 靖, 电子科技大学

Foreground Capacitor Mismatch Calibration

- The capacitor mismatch will directly appear in digital output and can not be shaped by NS loop.
- The quantization noise generated at twice conversion shows a strong correlation. As mismatch error increase, this dependence becomes weaker.

- ✓ Fabricated in 0.13µm CMOS Process.
- ✓ Core Area $485 \times 340 \ \mu m^2$.
- ✓ MOM Capacitors are Adopted.

Noise Contribution	Noise power	Percentage	
Input Sampling	(22.6 µV)²	10%	
Quantization	(15.2 µV)²	4.5%	
Comparator	(3.1 µV)²	0.2%	
Residue Sampling	(54.1 µV)²	57.6%	
Residue Amplifier	(35.5 µV)²	24.8%	
SC FIR	(11.6 µV)²	2.65%	
SC IIR	(3.6 µV)²	0.25%	

- ✓ Foreground Calibration Performed on FPGA.
- ✓ Power Consumption 96µW Under 1.2-V supply.
- ✓ Operating at 2-MHz With an Oversampling Ratio (OSR) of 8 and BW 125kHz.

李 靖, 电子科技大学

- ✓ 3rd-Order Shaping of 60 dB/dec.
- ✓ DWA Suppresses The Distortions and Spurs, but Increases The Noise Floor.
- ✓ With Digital Foreground Calibration, Harmonics Across The BW Are Suppressed to -90 dB Without Noise Deterioration.
- The Convergence Speed is Strongly Related to The Averaging Filter.
- 李 靖, 电子科技大学

李 靖, 电子科技大学

	JSSC'18	JSSC'19	JSSC'20	JSSC'20	TVLSI'21	JSSC'21	This Mork
	S. Li	H. Zhuang	L. Jie	X. Tang	Q. Zhang	T. Wang	I NIS VVORK
Architecture	EF	CIFF	Cascade-EF	CIFF	CIFF	EF-CIFF	EF-CIFF
NTF Order	2	2	4	2	2	3	3
Insensitive PVT	No	Yes	Yes	Yes	Yes	Yes	Yes
Mismatch Cal. Complexity	Hard	Hard	Hard	Hard	DWA	Hard	Simple
Amplifier	Dynamic	Passive	Op-amp	Dynamic	Passive	Dynamic	Op-amp
CMOS (nm)	40	40	28	40	130	65	130
Supply	1.1	1.1	1	1.1	1.2	1.1	1.2
Resolution (bit)	9	9	8	10	9	10	8
Fs (MS/s)	10	8.4	2	10	2	10	2
OSR	8	16	10	8	8	8	8
BW (kHz)	625	262	100	625	125	625	125
DR (dB)	80.5	N/A	89	85.5	79.1		79.8
SNDR (dB)	79	78.4	87.6	83.8	78.69	84.8	79.57
ENOB (bit)	12.83	12.73	14.25	13.62	12.78	13.79	12.93
SFDR (dB)	89	90	102.8	94.3	92.9	103	94.75
Power (µW)	84	107	120	107	59.9	119	96
FoMs [#] (dB)	178	171	176.8	181.5	171.9	182	170.7

Conclusions

- ✓ A Third-Order NS-SAR ADC That Leverages a Hybrid Error Control Scheme was Proposed.
- ✓ The Prototype Achieved 13bit ENOB With FoMs of 170dB.
- ✓ Dither-Based Foreground Capacitor Calibration is Proposed and Realized for NS-SAR ADC in This Paper.

Research Interests

高精度nW级片上CMOS温度传感器

[Jing Li .et.al, IEEE TCASI, 2021]

超声医学成像前端专用集成电路

[Jing Li. et.al, 2019 Symposium on VLSI Circuits, 2019]

Email: lijing686@uestc.edu.cn Website: https://www.ese.uestc.edu.cn/info/5036/13752.htm

李 靖, 电子科技大学

Thank You For Your Attention !

