Low-phase-noise Millimeter-wave Fundamental CMOS Oscillators: from Multicore to Many-core

Haikun Jia

School of Integrated Circuits, Tsinghua University

Workshop on IC Advances in China (ICAC) 华人芯片设计技术研讨会 2022

Outline

- Introduction
- Challenges for mm-Wave High-Quality VCOs
- From Multi-Core to Many-Core
 - Synchronization Methods
 - Core Floorplan
- Mesh-Topology 16-Core Oscillator Prototype
 - Implementation Details
 - Measured Results
- Conclusions

Requirement for High-Performance mm-Wave VCO

- High-quality clock essential for varies applications [Razavi, TCAS-I, 21]
 - Sub-20fs rms jitter, VCO is one of the two main jitter contributors

Outline

- Introduction
- Challenges for mm-Wave High-Quality VCOs
- From Multi-Core to Many-Core
 - Synchronization Methods
 - Core Floorplan
- Mesh-Topology 16-Core Oscillator Prototype
 - Implementation Details
 - Measured Results
- Conclusions

$$L(\Delta\omega) \propto 10 \log_{10} \left[\frac{K_B T R_P}{A^2 Q^2} \frac{\omega^2}{(\Delta\omega)^2} \right]$$
 [D. B. Leeson, Proc. IEEE'66]

$$L(\Delta\omega) \propto 10 \log_{10} \left[\frac{K_B T R_P}{A^2 Q^2} \frac{\omega^2}{(\Delta\omega)^2} \right]$$
 [D. B. Leeson, Proc. IEEE'66]

- A1: Amplitude limited by process, reliability issue
 - Swing goes beyond supply voltage by techniques such as V_{GS} boosting.
 - Limited by process and reliability issue eventually.

$$L(\Delta\omega) \propto 10 \log_{10} \left[\frac{K_B T R_P}{A^2 Q^2} \frac{\omega^2}{(\Delta\omega)^2} \right]$$
 [D. B. Leeson, Proc. IEEE'66]

- A↑: Amplitude limited by process
- Q1: The mm-wave small inductance's Q problem

The Degraded Q of Small Inductance

- Small L desired for mm-wave VCOs
 - Small inductance budget
 - Decent frequency tuning range
- Inner edge deconstructive coupling degrades Q of small inductor
- PN in mm-wave VCO bounded by smallest realizable L with high Q

Q-factor

Improved by circular-topology inductors

Deconstructive coupling

$$L(\Delta\omega) \propto 10 \log_{10} \left[\frac{K_B T R_P}{A^2 Q^2} \frac{\omega^2}{(\Delta\omega)^2} \right]$$
 [D. B. Leeson, Proc. IEEE'66]

- A[↑]: Amplitude limited by supply voltage
- Q↑: Tank Q limited by "Q of small inductance" problem
- $R_{p\downarrow}$: Need large power for same *A*, power-performance tradeoff
 - How to achieve small Rp?

The First "Small R_P" Approach

The First "Small R_P" Approach

The Series-Resonance VCO

[A. Franceschin, ISSCC'22]

- STMicro 55nm BiCMOS
- P_{DC} = 0.6W from V_{CC} = 1.2V

- Best PN @ 9.96 GHz: -138 dBc/Hz @1MHz
- Worst PN @ 10.2 GHz: -135.5 dBc/Hz @1MHz

Phase noise at least 10dB below what reported so far in silicon

The First "Small *R*_P" Approach

The Series-Resonance VCO

[A. Franceschin, ISSCC'22]

- Main limitations:
 - Tuning Range: ~9%
 - Reliability: over-stressed
 - Challenge in CMOS
 - Not yet proven in mm-wave

The Second "Small *R_P*" Approach

- Multi-Core VCO
 - ◎ 1/N times smaller R_P
 - PN improved by 10log(N)
 - Carger L in each core
 - ⊗ Large chip area
 → not significant in mm-wave

*N: number of cores

The Second "Small *R*_P" Approach

A mm-Wave Quad-Core VCO example

- 52.4~60.4GHz in 65nm CMOS
- -104.7dBc/Hz@1MHz from 59.1GHz
- 186.5dBc/Hz FoM
- Slab high-Q small inductors
- Transformer enables NMOS-only VCO
- Complex route, difficult to extend to core number >4

further PN improvement → from multicore to many-core

Outline

- Introduction
- Challenges for mm-Wave High-Quality VCOs
- From Multi-Core to Many-Core
 - Synchronization Methods
 - Core Floorplan
- Mesh-Topology 16-Core Oscillator Prototype
 - Implementation Details
 - Measured Results
- Conclusions

- Simple direct connection forces VCO cores to be in-phase
- **8** One-turn inductor limits the operation frequency
- 8 Trade-off between mismatch induced PN penalty and C_{PAR}

- Resistance-Coupled Multi-Core Sync
 - Optimal for RF dual-core or quad-core oscillators

Optimal for RF dual-core or quad-core oscillators
 NOT suitable for many-core due to long coupling traces

Workshop on IC Advances in China (ICAC) 2022

Mode-Rejection-Coupled Multi-Core Sync

- Each differential pair shares transformer with adjacent ones
- CM current flows through R_C, reducing Q_{CM}, forcing differential

Mode-Rejection-Coupled Multi-Core Sync

Better performance against frequency mismatches

A Better Choice for Many-Core Oscillator

- Mode-Rejection-Coupled Multi-Core Sync
 - © Only local resistors at virtual ground, no C_{PAR} penalty
 - Easy extend to many-core oscillators

Outline

- Introduction
- Challenges for mm-Wave High-Quality VCOs
- From Multi-Core to Many-Core
 - Synchronization Methods
 - Core Floorplan
- Mesh-Topology 16-Core Oscillator Prototype
 - Implementation Details
 - Measured Results
- Conclusions

Many-Core Oscillator Floorplan

- Series topology many-core floorplan
- Large chip area and long power deliver distance from outside

Many-Core Oscillator Floorplan

- Folded-series topology many-core floorplan
- Inward folding to make use of inner empty spaces

Proposed Mesh-Topology Floorplan

- Make fully use of inner grid edges to route transformers
- Corner space available for DECAP or other circuity

Proposed Mesh-Topology Floorplan

Scalable for flexible power-for-performance trade-off

Outline

- Introduction
- Challenges for mm-Wave High-Quality VCOs
- From Multi-Core to Many-Core
 - Synchronization Methods
 - Core Floorplan
- Mesh-Topology 16-Core Oscillator Prototype
 - Implementation Details
 - Measured Results
- Conclusions

The Mesh-Topology Transformers

- Transformer coil at drains
- The thick most 3.4µm M9 chosen for IR drop consideration
 - Supply power at all central taps

The Mesh-Topology Transformers

- Transformer coil at gates
- The 0.9µm M8 layer is chosen
- Split at the mesh cross points
- Common-mode rejection and gate dc bias realized by narrow thin-metal trace resistance

Power Delivery Network (V_{DD})

 Diamond-shape V_{DD} network to avoid overlap with transformers

Power Delivery Network (V_{DD})

- Diamond-shape V_{DD} network to avoid overlap with transformers
- Mainly use 1.45µm M10, stacking 3.4µm M9 when possible

Power Delivery Network (V_{DD})

- Diamond-shape V_{DD} network to avoid overlap with transformers
- Mainly use 1.45µm M10, stacking
 3.4µm M9 when possible
 - Distributed outsider access
 point to reduce IR drop

Power Delivery Network (V_{SS})

- V_{SS} network perpendicular to transformers
- Mainly use 3.4µm M9, stacking
 1.45µm M10 when possible
- Distributed outsider access point to reduce IR drop

Power Delivery Network (V_{ss})

- V_{SS} network perpendicular to transformers
- Mainly use 3.4µm M9, stacking 1.45µm M10 when possible
- Distributed outsider access point to reduce IR drop

V_{DD} and V_{SS} combined 4.2mV worst IR drop in post-simulation

Tile-Based Single Oscillator Core

Reusable tile-based oscillator core to save layout effort

Tile Transformer Simulated Results

- Inductance of <25pH and Q of >22 at 60GHz achieved
- L_D and L_G strongly coupled (k=0.89 at 60GHz)

Decoupling Capacitor Implementation

- Combination of high-Q MOM and low-Q MOS capacitor
- Partially pattern ground shield style not to degrade tank's Q

Outline

- Introduction
- Challenges for mm-Wave High-Quality VCOs
- From Multi-Core to Many-Core
 - Synchronization Methods
 - Core Floorplan
- Mesh-Topology 16-Core Oscillator Prototype
 - Implementation Details
 - Measured Results
- Conclusions

Chip Microphotograph

- 65nm CMOS Process
- Core area: 0.15mm²
- Supply voltage: 0.65V
- Power consumption: 107~125mW

Measurement Setup

- One-time cap-bank calibration is performed manually
- After-that, all cap-bank codes are identically tuned

Measured Phase Noise Plot

Measured Phase Noise Plot

Measured Phase Noise Plot

Measured Phase Noise and FoM

- PN@1MHz: -111.7~-107.4 dBc/Hz
- PN@10MHz: -136.0~-133.1 dBc/Hz

- FoM@1MHz: 181.9~185.7 dBc/Hz
- FoM@10MHz: 186.7~190.3 dBc/Hz

Compared with recent mm-wave fundamental VCOs

		This work	JSSC'18 [4]	ISSCC'20 [5]	ISSCC'21 [6]	TMTT'16 [7]	JSSC'11 [8]
Technology		65nm CMOS	65nm CMOS	40nm CMOS	65nm CMOS	65nm CMOS	65nm CMOS
No. of Cores		16	4	4	4	2	2
Tuning range (GHz)		53.6 to 60.2	42.9 to 50.6	18.6 to 40.1	52.4 to 60.4	51.7 to 56.6	56 to 60.4
Supply Voltage (V)		0.65	0.9	1.1	0.55	1.0	1
Power (mW)		107 to 125	20.9 to 21.5	9 to 15	22.5 to 23.6	24	22
Phase Noise (dBc/Hz)	100kHz	-84.4 to -78.7	-75*	-72.7 to -82.3	-75.2 to -71.2	N/A	-67*
	1MHz	-111.7 to -107.4	-106.1 to - 101.6**	-108.5 to -100.3	-104.7 to -101.4	-95	-97 to -95
	10MHz	-136.0 to -133.1	-121*	-130.3 to -122.7	N/A	-119.2	-117
FoM (dBc/Hz)	100kHz	173.9 to 178.3	N/A	N/A	172.1 to 176.9	N/A	N/A
	1MHz	181.9 to 185.7	181.1 to 186.6**	181.4 to 184.4	182.2 to 186.5	179.8	177 to 179
	10MHz	186.7 to 190.3	N/A	183.0 to 186.3	N/A	N/A	N/A
Core Area (mm2)		0.15	0.039	0.08	0.032	0.032	0.075
*Estimated from figures **Normalized from 3MHz offset FoM= $ PN +20\log_{10}(f_0/\Delta f)-10\log_{10}(P_{DC}/1mW)$							

Compared with recent mm-wave fundamental VCOs

circulator-topology quad-core oscillator

Phase noise in the figure is normalized to 60GHz

Compared with recent mm-wave fundamental VCOs

Phase noise in the figure is normalized to 60GHz

circulator-topology quad-core oscillator

7.0dB PN improvement 0.8dB FoM degradation

mesh-topology 16-core oscillator

Workshop on IC Advances in China (ICAC) 2022

Compared with recent mm-wave fundamental VCOs

Phase noise in the figure is normalized to 60GHz

Conclusions

- Two small Rp approaches for high-performance
 - Series-resonance architecture
 - Multi-core architecture
- Two technologies enable many-core oscillator
 - Mode-rejection-coupled synchronization
 - Mesh-topology floorplan
- 16-core oscillator prototype in 65nm CMOS
 - -111.7dBc/Hz at 1MHz from 54.47GHz
 - 190.3dBc/Hz FoM at 10MHz offset

Thank you for your attentions!