An Event-Driven Pipelined ADC with 100x BW Scaling Using A 3-Stage Cascoded Floating Inverter Amplifier

<u>Xiyuan Tang</u>¹, Xiangxing Yang², Jiaxin Liu³, Wei Shi², David Z. Pan², Nan Sun⁴

¹Peking University, Beijing, China ²University of Texas at Austin, Austin, TX ³University of Electronic Science and Technology of China, Chengdu, China ⁴Tsinghua University, Beijing, China

Outline

- Motivation
- Proposed Cascoded <u>Floating Inverter Amplifier (FIA)</u>
- Pipelined SAR Circuit Implementation
- Measurement Results
- Conclusion

Event-Driven ADC

- Multi-standard wireless
- IoT with sparse signals

Event-Driven ADC

- Multi-standard wireless
- IoT with sparse signals
 Scalable power w.r.t. signal rates
 Duty-cycling friendly

Event-Driven ADC

- Pipelined SAR ADC
 - -High speed
 - -High precision
- Residue amplification is the <u>key</u> operation!

- Closed-loop OTA
 - -High gain 😊
 - -PVT-robust stability ©
 - -Not suitable for duty-cycling 😕

- Closed-loop Ring Amp [Hershberg, JSSC '12]
 - -Duty-cycling friendly ©
 - -PVT sensitive dead-zone biasing 🛞
 - -Constant 1st-stage dominant power 🛞

- <u>Floating Inverter Amplifier (FIA) [Tang, VLSI '19]</u>
 - -Current reuse 😊
 - -Intrinsic CMFB ③

- <u>Floating Inverter Amplifier (FIA) [Tang, VLSI '19]</u>
 - -Current reuse ©
 - -Intrinsic CMFB ③

- Closed-loop FIA [Tang, ISSCC '20]
 - -Duty-cycling friendly ©
 - -Time-decaying power ©
 - -PVT-robust stability ©

-Low speed ⊗

Requirements	ΟΤΑ	Ring-Amp	2-stage FIA	Proposed 3-stage cascoded FIA
High gain	\odot	٢	8	\odot
High speed	\odot	٢	8	\odot
Loop stability	٢		\odot	
Duty cycling	\bigotimes	٢	\odot	
Decaying power	8			

Outline

- Motivation
- Proposed Cascoded <u>Floating Inverter Amplifier (FIA)</u>
- Pipelined SAR Circuit Implementation
- Measurement Results
- Conclusion

- Proposed 3-stage cascoded FIA
 - -Gain enhancement: 3-stage + dynamic cascode amplifier
 - -Speed enhancement: two-step operation

- 1st/2nd-stage FIA
 - -Local gain boosted by negative-R
 - -22dB each stage

3rd-stage cascoded FIA
 -~40dB gain required

-Dedicated cascode biasing 😕

 V_{FIA} 3rd-stage cascoded FIA $C_{R1} = 0.5 \text{ pF}$ -Self-biased dynamic cascode Φ_{RA} V_{IP} V_{OP} V_{ON} V_{CM}^{I} C_{R1} V_{IN} V_{IP}· V_{IP}- Φ_{RA}

 V_{IN}

 V_{IP}

 V_{IP}

 V_{IN}

- 3rd-stage cascoded FIA
 - -Self-biased dynamic cascode
 - -Low speed limited by quenching 😕

- 3rd-stage cascoded FIA
 - -Two-step operation
 - Dual reservoir capacitors for fast settling
 - Single capacitor for fast quenching

- Closed-loop 3-stage FIA design
 - -82dB DC gain

- Closed-loop 3-stage FIA design
 - -R₃: boosted by cascode stage
 - -C_L: 2nd-stage SAR DAC

- Closed-loop 3-stage FIA design
 - -R₃: boosted by cascode stage
 - -C_L: 2nd-stage SAR DAC

- Closed-loop 3-stage FIA design
 - -Fast settling step

- Closed-loop 3-stage FIA design
 - -Dominate pole shifts inward faster to ensure stability

Closed-loop 3-stage FIA design

- Closed-loop 3-stage FIA design
 - -Reduced noise ©
 - $-G_{m3}R_1$ drops with time

- Closed-loop 3-stage FIA design
 - -3-stage operation + self-biased dynamic cascode
 •82dB DC gain
 - -Two-step operation + dynamically scaled BW
 - Settling, stability, and noise

Outline

- Motivation
- Proposed Cascoded Floating Inverter Amplifier (FIA)
- Pipelined SAR Circuit Implementation
- Measurement Results
- Conclusion

Pipelined SAR Design

Pipelined SAR Design

- 32x dynamic residue amplification
 - 16x closed-loop FIA gain
 - 2x reference scaling

Pipelined SAR Design

Event

Outline

- Motivation
- Proposed Cascoded Floating Inverter Amplifier (FIA)
- Pipelined SAR Circuit Implementation
- Measurement Results
- Conclusion

Chip Micrograph

- 40nm LP CMOS
- Active Area: 0.056mm²
- Supply: 1.2V
- Fs: 0.4-40MHz
- Highest BW: 20MHz

Measured Spectra @ 40MHz

- LF input @ 1MHz
 - SFDR: 85.5dB
 - SNDR: 77.6dB
- HF input @ 18MHz
 - SFDR: 81.4dB
 - SNDR: 75.7dB

DR & Power Breakdown

Measured DR: 79.5 dB

• Power: 821uW @ 40MS/s

Measured Fs Variations

- Sampling frequency -0.4MHz to 40MHz
- Negligible performance variation
- Linearly scaled power

Measured Temp/Voltage Variations

- Temp: -10°C ~ 80°C
 Within 2 dB variation
- Voltage: -12% ~ 12%
 –Within 1 dB variation

Comparison with Prior Works

	ISSCC 15 Lim	ISSCC 19 EIShater	ISSCC 20 Hung	ISSCC 19 Hershberg	This work
Architecture	Pipe-SAR	Pipe-SAR	Pipe-SAR	Pipe-SAR	Pipe-SAR
Process [nm]	65	180	28	16	40
Residue Amp	Ring amp	Ring amp	Ring amp	Ring amp	FIA
Stabilization	Deadzone	Deadzone	Deadzone	Deadzone	Self-quenching
Sampling Freq. Scalability	N/A	N/A	N/A	100x	100x
Fs [MS/s]	50	15	100	6-600	0.4-40
Area [mm ²]	0.054	1.82	0.018	0.037	0.056
Power [mW]	1	9.82	0.7	6	0.82
SNDR [dB]	70.9	90.8	71.7	60.2	75.7
FoMw [fJ/c-s]	6.9	23.1	2.2	12	4.1
FoMs [dB]	174.9	179.6	180.2	167.2	179.6

Comparison with Prior Works

	ISSCC 15 Lim	ISSCC 19 EIShater	ISSCC 20 Hung	ISSCC 19 Hershberg	This work
Architecture	Pipe-SAR	Pipe-SAR	Pipe-SAR	Pipe-SAR	Pipe-SAR
Process [nm]	65	180	28	16	40
Residue Amp	Ring amp	Ring amp	Ring amp	Ring amp	FIA
Stabilization	Deadzone	Deadzone	Deadzone	Deadzone	Self-quenching
Sampling Freq. Scalability	N/A	N/A	N/A	100x	100x
Fs [MS/s]	50	15	100	6-600	0.4-40
Area [mm ²]	0.054	1.82	0.018	0.037	0.056
Power [mW]	1	9.82	0.7	6	0.82
SNDR [dB]	70.9	90.8	71.7	60.2	75.7
FoMw [fJ/c-s]	6.9	23.1	2.2	12	4.1
FoMs [dB]	174.9	179.6	180.2	167.2	179.6

ADC Surveys (ENOB≥12)

- Walden FoM: 4.1fJ/conv-step
- Schreier FoM: 179.6dB

Conclusion

- A 3-stage cascode FIA is proposed:
 - –Fully dynamic → duty-cycled operation
 - −High gain → high precision
 - –Dynamically scaled BW → benefits settling, stability, and noise
- Compared to the prior pipelined SAR:
 - -Consistent performance and linearly scalable power over 100× sampling rate adjustment
 - -Advancing state-of-the-art energy efficiency

Greetings from PRIME

Welcome to join us!

 Post-doc, RA openings
 xitang@pku.edu.cn

Thank you for your attention!