Practical Concerns and Solutions in Integrated High-Resolution ADCs

High Resolution ADC Needs

- General specifications
 - High SNDR: >90dB
 - **High efficiency:** >175dB FoMs
 - Med-low speed: kHz ~ MHz BW

Varieties of Solutions Exist

- General specifications
 - High SNDR: >90dB
 - **High efficiency:** >175dB FoMs
 - Med-low speed: kHz ~ MHz BW

Problem Solved?

- High SNDR and FoM Achieved
- Higher BW on the way
- But we concern MORE in practice!
 - Especially for integrated ADC IP

E.g. Wearable devices, IoT, smart sensing...

Process and Area Concerns

- Many advanced high-resolution ADCs are made in old process
 - And they are large too
- But SoC prefers advanced process

Driving Effort

- Driving high-resolution Nyquist ADC is a big challenge
 - Cs is large for low KT/C
- Oversampling does not fully relax driving effort
 - Need to charge Cs faster

Nyquist And Single-End Capability

- Many applications need a "Nyquist" ADC
 - Support single-shot conversion
 - Support multiplexing
- Single-ended capability is also desired
 - Compatible with various input formats
 - i.e., a high full-scale CMRR

And More ...

- Decoupling
 - Many high-resolution ADCs heavily rely on large decaps
 - Typically for stabilizing / denoise references
 - E.g. SAR ADC

Calibration and trimming

- Foreground calibration / trimming increases testing cost
- Background calibration / DEM increases P/A cost

PVT robustness

• Sometimes ignored by academic designs

. . .

The Complete Wish List

. . .

The Complete Wish List

✓ High SNDR and FoM

Practical Features:

- ✓ Advanced process compatible
- ✓ Low area
- Easy driving
- ✓ Nyquist capable
- ✓ Single-ended capable
- Easy decoupling
- ✓ Calibration free
- ✓ PVT Robust

. . .

[Y. Chae, ISSCC' 13]

- Slow coarse stage + single-bit DSM
 - ✓ Effectively multi-bit
 - ✓ Inherent linear DSM
 - ✓ Low DAC toggle rate
 - ✓ Small input to LF
 - ➤ DAC mismatch unsolved
 - X Only works for DC
 - X Massive SC input sampling

Mismatch Error in DAC

Mismatch error in DAC brings nonlinearity

Thermometer DAC (2bits)

Error & D_{IN} \implies Distortion

ICAC 2022

The "Real Time" (RT) DEM

Circulate the elements step-by-step for a complete round

Error $\gtrless D_{IN} \implies Distortion$

Error \propto **D**_{IN} \implies **Linear gain error**

[E. Tuijl, ISSCC' 04]

The "Real Time" (RT) DEM

- Remove mismatch completely
- ✓ Simple implementation

 $\textbf{Error} \propto \textbf{D}_{\textbf{IN}} \Longrightarrow \textbf{Linear gain error}$

[E. Tuijl, ISSCC' 04]

The "Real Time" (RT) DEM

- Remove mismatch completely
- ✓ Simple implementation
- Limitations

High OSR
OK for advanced process
1st-order IDSM

Decoupled Stages with RT-DEM

- ✓ Simple hardware
- ✓ Completely remove mismatch
- ✓ Low toggle rate
- ✓ Code independent ripple
- ? Cannot track AC

Introduce Tracking Mechanism

- ✓ Simple hardware
- ✓ Completely remove mismatch
- ✓ Low toggle rate
- ✓ Code independent ripple
- ✓ Tracks input
- ✓ Gain calibration free

Implement Coarse ADC

- ✓ Simple hardware
- ✓ Completely remove mismatch
- ✓ Low toggle rate
- ✓ Code independent ripple
- ✓ Tracks input
- ✓ Gain calibration free
- ? Needs complicated B2T

• What is the simplest ADC providing "thermometer" output?

Simplest – Counting ADC

- Ramp DAC's output till V_{IN}
- Count the steps of ramping
- \checkmark Reusing the DEM and DAC
 - ✓ No B2T!
 - ✓ Low power
 - ✓ Compact

Even Simpler – Comparator Reuse

- Ramp DAC's output till V_{IN}
- Count the steps of ramping
- ✓ Reusing all hardware
 - ✓ No B2T!
 - ✓ Low power
 - ✓ Even more compact!

Switch to Continuous-Time

- Gm-C loop filter (integrator)
 - ✓ Fast, settling free
 - ✓ High efficiency
 - ✓ Linearity relaxed by small input
 - ✓ Low swing scaling friendly

- Cap-coupled input
 - ✓ Easy driven
 - ✓ kT/C noise free

"Zoom of Incremental + Counting" (ZIC)

- ✓ High SNDR
- ✓ Good scalability
- ✓ Small and simple
- ✓ Easy driving
- ✓ Stable Vref ripple
- ✓ Nyquist capable
- ✓ Calibration free
- ✓ PVT Robust

- Cap coupling easy driving
 - X Cannot accept DC input

 $C_{U} = 12.5 \text{fF}$ $C_{IN} = 132C_{U}$

- Cap coupling easy driving
- Reset during idle
 - ✓ Reset to $V_{IN,CM}$ gives great CMRR
 - X Induce kT/C noise

- Cap coupling easy driving
- Reset during idle
 - Apply chopping kT/C is DC error
 - \checkmark Also suppress flicker noise and

leakages

- Cap coupling easy driving
- Reset during idle
- Apply chopping
- $> V_{IN,CM} = (V_{IN}^{+} + V_{IN}^{-})/2$
 - Sample both V_{IN} on split C_{IN}
 - Chopping is embedded

Full Schematic

Dynamic Power Concern

Clock Generation Concern

- The 500MHz clock sounds costly to generate? Not really
 - ✓ Loose jitter requirement: 3ps rms for 105dB
 - ✓Loose frequency precision: even $\pm 20\%$ F_{CLK} is tolerable

A "crappy" free-running relaxation oscillator* is enough

- ~200uW @ 500M (post sim)
- 10x40um
- No trimming needed

*Not used in actual measurement

Prototype ADC

Single-Tone Test @20kS/s

CMRR and Single-Ended Input

PVT Measurements

SOTA Design Comparison

	ISSCC'22 This work		VLSI'20 E. Elan	VLSI'18 B. Wang	ISSCC'21 S. Mondal	ISSCC'22 J. Steensgaard	ISSCC'20 J. Liu
Architecture	Zoom (Cnt' + CT-IDSM)		Zoom (SAR + DT-DSM)	DT-IDSM	CT-DSM	Multi-step SAR	NS-SAR
Process (nm)	28		160	65	65	180	40
Area (mm²)	0.014		0.27	0.134	0.39	0.78	0.061
Supply (V)	0.9 / 1.2		1.8	1.2	1.2	1.8 / 5	1.1
OSR	2 ¹⁴	2 ¹³	87.5	256	150	1	25
F _{s,nyq} (kS/s)	20	50	40	40	48	2000	80
Power (mW)	0.47	0.59	0.44	0.55	0.14	8.5	0.067
SNDR (dB)	102.9	100.1	106.5	100.8	100.9	105.3	90.5
FOM _s (dB)	176.2	176.4	183.1	176.4	183.3	186.0	178.2

Includes decimation filter

Practical Features

	ISSCC'22 This work	VLSI'20 E. Elan	VLSI'18 B. Wang	ISSCC'21 S. Mondal	ISSCC'22 J. Steensgaard	ISSCC'20 J. Liu
Architecture	Zoom (Cnt' + CT-IDSM)	Zoom (SAR + DT-DSM)	DT-IDSM	CT-DSM	Multi-step SAR	NS-SAR
Full-Scale CMRR @ DC	>100dB	>100dB	Not Support	Not Support	140dB	Not Support
Multiplexing / Single-Shot	Incremental	Not Support	Incremental	Not Support	Nyquist Sampling	Not Support
PVT	Stable	Stable	Stable	Not Report	Stable	Stable
Mismatch Solution	RT-DEM	DWA	DWA	1bit-DAC	Cal. + DEM	MES
Reference Ripple	Code Independent	Code Dependent	Code Dependent	Negligible (RDAC)	Code Dependent	Code Dependent
Input Network	Cap Coupling	Switched Cap	Switched Cap	Resistive	Switched Cap	Switched Cap

Area & Process Highlight

[B. Murmann, "ADC Survey" Jun 2021]

Conclusion

- **Prototype Highlights**:
 - Smallest for 90+dB SNDR
 - Highest SNDR for 28nm
 - Nyquist and single-end capability
- Suggestions for designing integrated high-resolution ADC
 - Always consider the deployment in practice
 - Take advantage of fast digital (e.g. high OSR)
 - Simple analog circuitry is preferred
 - Architecture hybridization is promising

Thanks!

Q&A