115nA@3V, ULPMark-CP score 1205 SCVR-less Dynamic Voltage-Stacking Scheme for IoT MCU

Xiaomin Li¹, Yibo Xu^{1,2}, Lizheng Ren¹, Weiwei Ge^{1,2}, Jianlong Cai¹, Xinning Liu^{1,2}, <u>Jun Yang^{1,2}</u>

¹Nanjing Low Power IC Technology Institute, Nanjing, China ²Southeast University, Nanjing, China

Outline

- D Motivation
- Dynamic voltage-stacking scheme
 - **D** Architecture
 - **D**ynamic switching scheme
 - Protection circuits
- Deasurements
- Conclusions

Applications for This Work

Demand: MCU is increasing demand as the core component of IoTs
Challenge: Limited by battery capacity, Ultra Low Power

Limitation of Conventional Designs

- Conventional flat architecture for both normal state and sleep state High sleep
- □ Sleep power breakdown of MCU
 - When duty cycle is 1:1000, sleep power accounts for most of the total power
 - The SCVR consumption accounts for most of the sleep power

energy (🖂

Limitation of Conventional Designs

- Prior stack architecture for normal state and sleep state*
- □ High dynamic power 🔅
 - •Too many level shifters are needed for stacked memory

*K. Blutman, et al., "A Low-Power Microcontroller in a 40-nm CMOS Using Charge Recycling", JSSC, vlo.52, no.4, pp. 950-960, Apr. 2017.

Outline

■ Motivation

Dynamic voltage-stacking scheme Architecture

Dynamic switching scheme
Protection circuits
Measurements

□ Conclusions

Architecture

Modules in power-down domain are turned off in sleep state
Modules in always-on domain need to be powered all the time

Architecture: Flat Mode for Normal State

Low active energy: Modules work at low supply voltage

□ Low sleep energy: Stacked scheme to reduce sleep energy

Architecture: Stack Mode for Sleep State

Low active energy: Modules work at low supply voltage

Low sleep energy: Stacked scheme to reduce sleep energy

Outline

Motivation

Dynamic voltage-stacking scheme Architecture

Dynamic switching scheme

D Protection circuits

□ Measurements

Conclusions

Dynamic Switching Scheme

Dynamic Switching Scheme

Dynamic Switching Process: Preparation

Outline

Motivation

- Dynamic voltage-stacking scheme
 - □ Architecture
 - Dynamic switching scheme
 - Protection circuits
- □ Measurements
- Conclusions

Protection Circuits: XO32 Protection Circuits

D Purpose: Avoid the supply voltage of XO32 and RTC >1.5V, or <0.5V

Protection Circuits: DRV Protection Circuits

$$V_{vddram} - V_{vssram} = V_M + V_F > V_{DRV}$$
$$\approx V_M - \frac{kT}{q_p} \ln\left[1 - k1(1 - e^{\frac{-VM}{kT/qn}})\right]$$

- V_F: Forward voltage of Mb
- V_M: Switch voltage of Schmitt circuit

Track Circuit: Process Variation Tracking

Track Circuit: Temperature Tracking

* R. Kanj et al., "Gate Leakage Effects on Yield and Design Considerations of PD/SOI SRAM Designs", Int. Symp. Quality Electronic Design, pp. 33-40, Mar. 2007.

Outline

■ Motivation

Dynamic voltage-stacking scheme

□ Architecture

Dynamic switching scheme

D Protection circuits

Measurements

Conclusions

Stack MCU Chip

Technology	TSMC40nm ULP	
Area	2.38mm ²	
Supply voltage	0.7V@Active	
	3V@Sleep	
Frequency	24MHz@Active	
	32KHz@Sleep	
RAM Size	8K Bytes	
Sleep Current	115nA	
ULPMark-CP Score	1205	

- □ Architecture 1: flat with SCVR in normal operation and sleep state
- Architecture 2: dynamic flat/stack architecture in which the flat mode is in normal operation and the stack mode is in sleep without SCVR

Stack_vdd1: SRAM1 VDD_RAM / Stack_vdd2: SRAM2 VDD_RAM / Stack_vdd3: X032 & RTC VDD

Time / us

70 |

Measurements at Different PG Configuration

ULPMark-CP*

ULPMark-CP: EEMBC's proposed benchmark, focusing on MCU's power and energy **ULPMark-CP Score:** inverse of the average power times 1000

* Embedded Microprocessor Benchmark Consortium, "EEMBC ULPMark benchmark," Oct. 2014, Accessed on Nov. 23rd, 2020, < https://www.eembc.org/products/#ulp>

** Another chip of Nanjing Low Power IC Technology Institute Co., Ltd. The score is certified.

ULPMark-CP Measurement Setup

PC Control the measurement setup and view the results

J-Link Load programs to MCU

Energy Monitor Power supply and signal acquisition

Test Board

Carry the MCU chip

Measured ULPMark-CP Score

Performance Summary of Stacking MCU

	ON Semi. RSL10	Ambiq Apollo512-KBR	This paper	
Architecture	Flat	Flat	Flat	Flat/Stack Dynamic Switching
Process	55nm	40nm	40nm	40nm
Voltage	3V	3V	3V	3V
Frequency	24MHz@run 32KHz@sleep	24MHz / 1MHz@run 32KHz@sleep	24MHz@run 32KHz@sleep	24MHz@run 32KHz@sleep
CPU	32-bits ARM Cortex-M3	32-bits ARM Cortex-M4	32-bits ARM Cortex-M3	32-bits ARM Cortex-M3
SRAM size@sleep	8KB	8KB	8KB	8KB
I/O	I2C / UART / SPI	I2C / UART / SPI	I2C / UART / SPI	I2C / UART / SPI
Sleeping Current	N/A	369nA@3V	170nA@3V	115nA@3V ★
ULPMark Score	1090	378	920	1205 🕇

Outline

■ Motivation

Dynamic voltage-stacking scheme

□ Architecture

Dynamic switching scheme

D Protection circuits

□ Measurements

Conclusions

Conclusions

- □ A dynamic voltage stacking scheme presented
 - Flat mode at active state
 - Stack mode at sleep state
- □ Protection circuits for avoiding too low effective supply voltage
 - A DRV protection unit for memories
 - A XO32 protection unit for XO32 and RTC logic
- **□** A 40nm MCU chip is verified and achieves:
 - 170nA sleep current and 920 ULPMark-CP score @ flat architecture
 - 115nA sleep current and 1205 ULPMark-CP score @ dynamic voltage stacking architecture

Thank you for your kind attention

Acknowledgements

National Key Research and Development Project (No. 2018YFB2202001)

Proplus NanoYield[™]