

A 15b Quadrature Digital Power Amplifier with Transformer-Based Complex-Domain Power-Efficiency Enhancement

Yun Yin (殷韵), Yicheng Li, Diyang Zheng, Yiting Zhu, Liang Xiong, Na Yan, Hongtao Xu Fudan University, Shanghai, China 2022.6.23

Outline

- Motivation
- Operations of Transformer-Based Complex-Domain Cell Sharing and Load Modulation
- Circuit Implementation
- Measurement Results
- Conclusions

Design Challenges

- Scare spectrum resources and higher data rate: OFDM and higherorder QAM modulation (OFDM &1024QAM: >10dB PAPR)
- High output power for large link distance & wide range of Pout
- High peak/PBO efficiency for battery life and thermal management
- Compact and high integration for low cost

Scaling-Friendly Digital RF

Digital TX

- + Conventional TX sub blocks
 (DAC, filter, Mixer, DA & PA) in a single block
- + Flexibility, MIMO & multi-standard TXs, Digital calibration
- + Small area, high efficiency
- + Compatible with CMOS scaling
- Quantization noise and sampling images

Digital Polar & Quadrature TXs

Digital polar TX

+ High Pout, high η

 BW expansion highly-linear phase modulator

Digital quadrature TX

+ Wide BW; no CORDIC, phase modulator or AM-PM alignment

– I/Q combination limits Pout and η

Efficiency-Enhanced DPAs

Dual-Band Polar DPA with 6dB PBO *η* boost

[Y. Yin, ISSCC'18] [Y. Yin, JSSC'19]

Wideband Polar DPA with 0-18dB PBO η boost

Polar/quadrature duali mode reconfigurable DPA complex-domain η boost

[L. Xiong, ISSCC'19] [Y. Yin, JSSC'20]

[Y. Yin, JSSC'19]

Quadrature DPA with

2022 The Workshop of IC Advances in China (ICAC)

IQ Sharing (1/2)

I PA cells can only be at state I, Q PA cells can only be at state Q

2022 The Workshop of IC Advances in China (ICAC)

IQ Sharing (2/2)

2022 The Workshop of IC Advances in China (ICAC)

Transformer-based Load Modulation (1/3)

2022 The Workshop of IC Advances in China (ICAC)

Outline

- Motivation
- Operations of Transformer-Based Complex-Domain Cell Sharing and Load Modulation
- Circuit Implementation
- Measurement Results
- Conclusions

- Square : conventional quadrature
- Circle : polar
- Diamond: cell-shared quadrature

Cell-shared quadrature:

I PA cells can be at state I or state Q, Q PA cells can be at state I or state Q

1: No cell sharing

• 2: Q PA cells are shared at state I

3: I PA cells are shared at state Q

Transformer-based load modulation @State A (1/2) At state A (Four 0dB PBOs):

Transformer-based load modulation @State A (2/2) At state A (Four 0dB PBOs):

Transformer-based load modulation @State B (1/2)

Transformer-based load modulation @State B (2/2) At state B (Four 3dB PBOs): (B) $I_{max}/\sqrt{2}$ DPA1 B (B) 100 $\pm N/2$ 80 Efficency (%) B I_{max}/√2 60 000 ≷50Ω g I_{max}//2 40 ou 20 $\pm N/2$ 0 Ň DPA2 Ν N/2 N/2 -N/2 ⁰ 0 -N/2 • $I_{out} = \sqrt{2} \times I_{max}$ • $R_{L_DPA1} = R_{L_DPA2} = 50\sqrt{2} \Omega$ -N -N Input Q Code Input I Code **4 efficiency peaks**

Transformer-based load modulation @State C (1/2) At state C (Four 6dB PBOs):

Transformer-based load modulation @State C (2/2)

At state C (Four 6dB PBOs):

Transformer-Based Complex-Domain Cell Sharing and Load Modulation

- The same peak output power as polar architecture
- 12 efficiency peaks (A/B/C states) in the I/Q complex plane

Outline

- Motivation
- Operations of Transformer-Based Complex-Domain Cell Sharing and Load Modulation
- Circuit Implementation
- Measurement Results
- Conclusions

Block Diagram

- 15-bit resolution: two 14-bit sub-DPAs with hybrid unary and binary arrays
 - I/Q cell sharing: LOI and LOQ signals are fed into both sub-DPAs
- Compact parallelcombining transformer (PCT) power combiner

DPA Groups

Group 0-15

Group 16

- Each sub-DPA: 16 hybrid groups (Group 0-15) and 1 binary group (Group 16)
- Each hybrid group: 7 thermo + 2-bit binary-coded cells

Differential Cascode Unit PA Cell

- I/Q cell sharing: logic circuit selects the state (I or Q) of each unit PA
- Cascode inverter Class-D topology to obtain high output power

DPA Group Floorplan

Sub-DPA1

Sub-DPA2

- "Snake" traverse movement: improve the differential nonlinearity (DNL)
- I/Q cell sharing: I/Q signals have inverse movements
- Good symmetry in the switching sequence

Matching Network (1/2)

- A compact single-transformer footprint
- Good differential symmetry
- Magnetic enhancement and increase Lpr
- Size reduction and lower loss

Matching Network (2/2)

Outline

- Motivation
- Operations of Transformer-Based Complex-Domain Cell Sharing and Load Modulation
- Circuit Implementation
- Measurement Results
- Conclusions

Chip Photo & Measurement Setup

- 55nm CMOS
- Core area: 1.2mm²
- Power supplies: 2.4V & 1.2V
- PAE = Pout / Pdc(all blocks)

Measured CW Performance (1/3)

Measured CW Performance @0.85GHz (2/3)

Comparable peak Pout with polar architecture:
 – 29.3dBm at state A where I/Q cell sharing is performed

Measured CW Performance @0.85GHz (3/3)

- Comparable peak PAE with polar architecture:
 - 43.1% at state A where I/Q cell sharing is performed
- Transformer-based cell sharing and load modulation:
 - Efficiency enhancement at state A, B and C
 - Average efficiency is effectively improved

Measured AM-AM & AM-PM Nonlinearity

For 15-bit diamond:

• AM-AM distortion: 1.6dB

Measured 10MHz 64-QAM LTE Signal

- W/O any digital predistortion (DPD)
- LTE 10MHz 64-QAM:
 - Pout: 23.4dBm
 - PAE: 24.0%
 - EVM: -26.0dB
 - Wide dynamic power range from -5dBm to 23.6dBm

Measured 20MHz LTE/WLAN Signals

- LTE 20MHz 64QAM w/o DPD:
 - Pout: 23.6dBm
 - PAE: 24.1%
 - EVM: -25.4dB

- WLAN 20MHz 64QAM w/o DPD:
 - Pout: 21.0dBm
 - PAE: 20.1%
 - EVM: -25.1dB

Outline

- Motivation
- Operations of Transformer-Based Complex-Domain Cell Sharing and Load Modulation
- Circuit Implementation
- Measurement Results
- Conclusions

Comparison with Prior Works

	This Work	JSSC 2016 [1]	JSSC 2017 [2]	ISSCC 2017 [3]	RFIC 2019 [7]
Architecture	Quadrature with Complex-	Class-G	Quadrature with	Quadrature with	Quadrature with
	Domain load modulation	Quadrature	IQ sharing	IQ sharing	Class-G Doherty
On-chip Balun	1 transformer	No	No	1 transformer	2 transformers
Frequency (GHz)	0.85	2.0	0.8	2.5	2.2
Resolution (bit)	15	7	6	11	12
Peak Pout (dBm)	29.3	20.5	13.9	28.6	27.8
Peak PAE (%)	43.1	20	40.4	35	32.1
Modulation Signal	LTE 10MHz, 64QAM	LTE 10MHz,	LTE 10MHz,	WLAN 20MHz	20-MHz SingleCarrier
		64QAM	16QAM		1024 QAM
Pavg (dBm)	23.6	14.5	6.97	17.3	21
PAE (%)	24.4	12.2	29.1	11	18.4
EVM (dB)	-25.6	-28.9	-25.9	-27.3	-43
W/ DPD	No	Yes	Yes	No	Yes
Supply Voltage (V)	1.2/2.4	1.2/2.4	1.1	1.1	2.55/1.25
Die Area (mm ²)	1.15×1.04	1.75×1	1.66×0.66	1×1	1.07*0.845
Technology	55nm CMOS	65nm RF CMOS	28nm CMOS	28nm CMOS	65nm CMOS

[†]Results measured with a 50ohm GSG probe.

2022 The Workshop of IC Advances in China (ICAC)

Conclusions

- A 15b quadrature DPA with transformer-based complex-domain cell sharing and load modulation is presented.
- A PCT power combiner is introduced for high output power, back-off efficiency enhancement and compact implementation.
- The quadrature DPA achieves:
 - 15b resolution, 29.3dBm peak Pout, 43.1% peak PAE
 - 12 efficiency peaks in the I/Q complex plane
 - Comparable average Pout and average PAE with polar DPA
 - Wide dynamic power range w/o DPD

Acknowledgements

- We would like to thank group members of Fudan WiCAS lab for technical discussions and supports.
- We would like to thank the State Key Laboratory of ASIC and System at Fudan University for measurement supports.