

An Isolated DC-DC Converter with a Cross-Coupled Shoot-Through-Free Class-D Oscillator Meeting the CISPR-32 Class-B EMI Standard

潘东方 中国科学技术大学

Outline

Motivation and Challenges

Proposed Low-EMI Isolated DC-DC converter

- EMI Mechanism for Isolated DC-DC Converter
- Proposed Cross-Coupled Shoot-Through-Free Class-D Oscillator
- System Architecture and Voltage Series-Combining Transformer in LGA package substrate
- Measurement Results
- Conclusions

Motivation

Isolation Solution for industrial, solar, motor control, EV, medical and telecommunication applications

Motivation

Isolation Solution for industrial, solar, motor control, EV, medical and telecommunication applications

Motivation

Isolation Solution for industrial, solar, motor control, EV, medical and telecommunication applications

Block Diagram of Transformer Isolation

Isolated DC-DC converter: TX chip, RX chip and micro-transformer chip

Challenges

[[]Image from ADI]

- Challenge 1: Cost vs. EMI
- Integrated transformer -> Small Size
 - → high operating frequency
- Challenge 2: Cost vs. Efficiency
- Integrated transformer→ Small Size
 →Limited Q

Challenges

[Image from ADI]

Small Size

- Challenge 1: Cost vs. EMI
- Integrated transformer -> Small Size
 - → high operating frequency → EMI issue
- Challenge 2: Cost vs. Efficiency
- Integrated transformer→ Small Size
 →Limited Q→ Low efficiency

How to improve the EMI performance and efficiency of isolated DC-DC converters with low-cost?

Outline

Motivation and Challenges

Proposed Low-EMI Isolated DC-DC converter

- EMI Mechanism for Isolated DC-DC Converter
- Proposed Cross-Coupled Shoot-Through-Free Class-D Oscillator
- System Architecture and Voltage Series-Combining Transformer in LGA package substrate
- Measurement Results
- Conclusions

Radiation Source in Isolated DC-DC Converter

- CISPR 32 radiated emission is an EMC standard for **multimedia equipment**
- Isolated dc-dc converters switch currents of several hundred mA at frequencies more than tens of MHz→Radiated emission

Radiation Source in Isolated DC-DC Converter

- Dipole radiation is the dominant radiation EMI source in isolated DC-DC converter
- The fluctuation of common-mode (CM) voltage of the transformer -> Large CM Current I_{CM}
- I_{CM} across the parasitic capacitance C_P of the isolation barrier \rightarrow Dipole radiation

Radiation Source in Isolated DC-DC Converter

- Dipole radiation is the dominant radiation EMI source in isolated DC-DC converter
- The fluctuation of common-mode (CM) voltage of the transformer -> Large CM Current I_{CM}
- I_{CM} across the parasitic capacitance C_P of the isolation barrier \rightarrow Dipole radiation

Existing Solution for EMI

Existing Solution for EMI

Existing Solution for EMI

Outline

Motivation and Challenges

Proposed Low-EMI Isolated DC-DC converter

- EMI Mechanism for Isolated DC-DC Converter
- Proposed Cross-Coupled Shoot-Through-Free Class-D Oscillator
- System Architecture and Voltage Series-Combining Transformer in LGA package substrate
- Measurement Results
- Conclusions

- Asymmetrical LC Tank
- → Large V_{PRI_CM}
- → High EMI

• M_{N1} and M_{P1} are both turned on when $V_{THN} < V_{PN} < V_{DD} - |V_{THP}| \rightarrow Large shoot-through current$

Gate CM voltages for NMOS and PMOS controlled separately (V_{GP1}&V_{GN1} shifted up/down)

As long as P₂ is ahead of P₄ that results in the condition of V_{BP}-V_{BN}>V_{DD}-|V_{THP}|-V_{THN}, M_{N1} will be turned off before M_{P1} is turned on → The shoot-through current can be avoided

State 1 and 3: Main operation states to alternately charge the primary coil to transfer power

State 2 and 4: Dead-time

Outline

Motivation and Challenges

Proposed Low-EMI Isolated DC-DC converter

- EMI Mechanism for Isolated DC-DC Converter
- Proposed Cross-Coupled Shoot-Through-Free Class-D Oscillator
- System Architecture and Voltage Series-Combining Transformer in LGA package substrate
- Measurement Results

Conclusions

- A full-bridge MOS rectifier with PWM control is implemented in the RX
- PWM signal is transmitted from TX to RX via a data isolator

■ $V_{GN1/2}$ & $V_{GP1/2}$ pulled up (down) → Variation of V_{GS} of power transistors → f_{osc} variation → Disperse energy

3D View of the proposed isolated DC-DC

- Two dies in Package: TX chip and RX chip
- Core-less high-Q transformer in an LGA package substrate for high efficiency and low-cost

3D View of the proposed isolated DC-DC

- Two dies in Package: TX chip and RX chip
- Core-less high-Q transformer in an LGA package substrate
- Output voltage swings of TX are limited to V_{DD} (5V) → voltage conversion ratio (VCR) of the converter <1</p>

Voltage Series-Combining Transformer

100

160

3D View of the proposed isolated DC-DC

- Two 1:1-coupled coils for a parallel-connected primary and a series-connected secondary
- Internal-metal layer-1 and layer-2 for primary and the secondary coils: 2-oz-thick and 200- μ m-wide copper traces \rightarrow High Q Coils \rightarrow High Efficiency

Outline

Motivation and Challenges

- Proposed Low-EMI Isolated DC-DC converter
 - EMI Mechanism for Isolated DC-DC Converter
 - Proposed Cross-Coupled Shoot-Through-Free Class-D Oscillator
 - System Architecture and Voltage Series-Combining Transformer in LGA package substrate
 - Measurement Results
- Conclusions

Measured Results

- 0.18µm BCD process
- **Chip area:**
- TX :1260µm × 2350µm
- RX:1260µm×1690µm
- Package area:10mm×12mm

V_{DD}=5V
 P_{OUT}=0.2W

V_{DD}=5V
 P_{OUT}=0.8W

Measured Results

- V_{DD}/V_{ISO}=4V/5V: Peak efficiency=51%@0.4W
- V_{DD}/V_{ISO}=5V/5V: Efficiency=41%@1W
- Maximum output power: 1.2W

Measured Results

Two-layer PCB without using any stitching capacitor

Pass CISPR32 Class-B certification with 2.27dB peak margin in the vertical field and 1.93dB peak margin in the horizontal field

Comparison

Reference	ISSCC'19 [2]	ISSCC'19 [5]	ISSCC'20 [4]	ISSCC'21 [3]	This work
Technology	0.35µm BCD	0.35µm BCD	0.35µm BCD	0.18µm BCD	0.18µm BCD
Package (Size)	SOIC-8 (10mm×6mm)	SOIC-28 (10mm×18mm)	N/A	FOWLP (5mm×5mm)	LGA Package (10mm×12mm)
Transformer Type	Coreless	Magnetic-Core	Coreless	Coreless (in Package)	Coreless (in Package)
Input Voltage	4.5~5.5V	4.5~5.5V	3.3V	3~6V	4~5.5V
Output Voltage	3.3V~5V	5V	3.3V	3.3V/5V	5V
Max. P _{OUT}	0.8W	1.1W	0.165W	1.25W	1.2W
Peak Efficiency	34%	52%	34%	46.5%	51%
EMI Performance*	Pass Class-B Limit with Frequency Hoping (without Stitching Cap)	Pass Class-B Limit with Two External Capacitors (without Stitching Cap)	N/A	N/A	Pass Class-B Limit (without Stitching Cap and Frequency Hopping)

*EMI Performance is evaluated to CISPR-32 (CISPR-22) Class B Certification and Input-output Ratio is 5V to 5V.

Comparison

Reference	ISSCC'19 [2]	ISSCC'19 [5]	ISSCC'20 [4]	ISSCC'21 [3]	This work
Technology	0.35µm BCD	0.35µm BCD	0.35µm BCD	0.18µm BCD	0.18µm BCD
Package (Size)	SOIC-8 (10mm×6mm)	SOIC-28 (10mm×18mm)	N/A	FOWLP (5mm×5mm)	LGA Package (10mm×12mm)
Transformer Type	Coreless	Magnetic-Core	Coreless	Coreless (in Package)	Coreless (in Package)
Input Voltage	4.5~5.5V	4.5~5.5V	3.3V	3~6V	4~5.5V
Output Voltage	3.3V~5V	5V	3.3V	3.3V/5V	5V
Max. P _{OUT}	0.8W	1.1W	0.165W	1.25W	1.2W
Peak Efficiency	34%	52%	34%	46.5%	51%
EMI Performance*	Pass Class-B Limit with Frequency Hoping (without Stitching Cap)	Pass Class-B Limit with Two External Capacitors (without Stitching Cap)	N/A	N/A	Pass Class-B Limit (without Stitching Cap and Frequency Hopping)

*EMI Performance is evaluated to CISPR-32 (CISPR-22) Class B Certification and Input-output Ratio is 5V to 5V.

Outline

Motivation and Challenges

- Proposed Low-EMI Isolated DC-DC converter
 - Proposed Cross-Coupled Shoot-Through-Free Class-D Oscillator
 - System Architecture and Voltage Series-Combining Transformer in LGA package substrate
- Measurement Results

Conclusions

Proposed fully-integrated isolated DC-DC converter:

- Symmetrical cross-coupled Class-D oscillator that greatly improves the EMI performance
- Meets the CISPR-32 Class B standard on a two-layer PCB without using any stitching capacitor
- Shoot-through-free with high efficiency and low cost
- ✓ 51% peak efficiency, 1.2W maximum output power

Thank You !