

An Ultra-Low-Jitter Frequency Synthesizer with Robust Lock Acquisition Performance

Outline

- Motivation and Background
- Proposed Integer-N TAPFD-based CPPLL
 - The concept of TAPFD
 - Challenge for the implementation of TAPFD
 - Overall structure of the Proposed PLL
- Measurement Results

Conclusion

Outline

Motivation and Background

- Proposed Integer-N TAPFD-based CPPLL
 - The concept of TAPFD
 - Challenge for the implementation of TAPFD
 - Overall structure of the Proposed PLL
- Measurement Results

Conclusion

Demand for PLL in 5G Application

Internet of Things

- Low power consumption
- Millimeter-wave Communication
 - For 5G NR n258: 24.25GHz-27.5GHz
- Massive-MIMO
 - > Ultra-low Jitter

Prior Arts with sub-100fs Jitter

Is there any way to obtain robust lock acquisition and low in-band phase noise simultaneously?

Review: Conventional CPPLL

Conceptual Block Diagram of Conventional CPPLL

Freq. detection capability, avoiding potential long relock time
 CP dominates in-band noise, thus poor in-band phase noise

Review: Noise in Conventional CPPLL

Prior Arts with sub-100fs Jitter

■18 CP unit slices in parallel

🙂 – Increase CP current

■ 30~40ps CP deadzone pulse width

— Minimize CP ON-state duty cycle

— Advanced process (16nm-FinFET)

Power-Noise Tradeoff in CPPLL

 New CPPLL
 Suppress the
 Break the

 Structure?
 CP Noise
 Tradeoff

How to break the power-noise tradeoff in CP?

Outline

Motivation and Background

Proposed Integer-N TAPFD-based CPPLL — The concept of TAPFD

- Challenge for the implementation of TAPFD
- Overall structure of the Proposed PLL

Measurement Results

Conclusion

The Concept of Conventional PFD

The Concept of TAPFD

The Concept of Proposed TAPFD

Input-referred noise of CP is suppressed by K_{TAPFD}

The Realization of Time-Amplifying

• The discharging current ratio determines the amplification gain: $\frac{\Delta T_{out}}{\Delta T_{in}} = K$

Transfer Characteristic of TAPFD

TAPFD maintains the frequency detection capability as PFD
TAPFD can obtain high phase-error gain at zero-crossing as SSPD/SPD

Outline

- Motivation and Background
- Proposed Integer-N TAPFD-based CPPLL
 - The concept of TAPFD
 - Challenge for the implementation of TAPFD
 - Overall structure of the Proposed PLL
- Measurement Results

Conclusion

Noise in TAPFD

◆TAPFD could contribute to input-referred noise

♦ Once it's too large, it can severely degrade in-band phase noise

Noise in TAPFD

Challenge for the Design of TAPFD

Challenge: Minimizing TAPFD phase noise to achieve effective noise suppression!

Detailed Implementation of TAPFD

• Thus the noise on V_{bias} can be cancelled by $S_{OUT1} - S_{OUT2}$

Simulation Results of TAPFD

- ♦ 20x Phase-error gain
- ◆ Linear range is +/- 150ps

Input-referred phase noise is smaller than XTAL

Outline

- Motivation and Background
- Proposed Integer-N TAPFD-based CPPLL
 - The concept of TAPFD
 - Challenge for the implementation of TAPFD
 - Overall structure of the Proposed PLL
- Measurement Results

Conclusion

Overall Structure

- A class-F VCO w/ built in tripler:
 - Feedback the fund. to relax divider/retimer operating frequency
 - The fund. LC tank achieves a better Q-factor than 3rd harmonic

Implementation of VCO

Layout of 3rd HE VCO

Fully symmetrical layout for less mismatch

■25.8GHz LC Tank is placed near M1,M2 to reduce EM loss

Transformer is made of thick metal M9 at the same layer to maintain both high Q and enough Km

Simulated VCO Phase Noise

Outline

- Motivation and Background
- Proposed Integer-N TAPFD-based CPPLL
 - The concept of TAPFD
 - Challenge for the implementation of TAPFD
 - Overall structure of the Proposed PLL

Measurement Results

Conclusion

Chip Micrograph

Measured Phase Noise

When TAPFD is OFF: in-band noise is dominated by charge pump

Measured Phase Noise

When TAPFD is ON: up to 24dB suppression of in-band phase noise

Power-Noise Tradeoff in CPPLL

The Power-Noise tradeoff in CP is broken by TAPFD

Performance Comparison

	This work	ISSCC'18[1]	ISSCC'20[2]	ISSCC'21[3]	ISSCC'20[4]	VLSI'21 [8]
		D. Turker	Y. Lim	E. Thaller	Y. Hu	Y. Zhao
Process	65nm	16nm	65nm	16nm	28nm	28nm
	CMOS	FinFET	CMOS	FinFET	LP CMOS	CMOS
Architecture	CPPLL		Digital	AD-SSPLL	Charge-	Double
	w/ TAPFD	OFFLL	SSPLL		Sharing Lock	Sampling
Туре	Integer-N	Integer-N	Integer-N	Integer-N	Integer-N	Integer-N
Ref. Freq. [MHz]	200	500	50	245.76	250	250
Out. Freq. [GHz]	24 to 28.2	7.4 to 14	12.0 to 14.5	12.1 to 16.6	21.7 to 26.5	19
rms Jitter [fs]	60@25.8GHz	53.6	83	49.9	75.9	20.3
	(10k to 30M)	(10k to 10M)	(1k to 100M)	(1k to 100M)	(10k to 30M)	(10k to 100M)
Ref. Spur [dBc]	-47	-75.5	-75	-75.1	-45	-66
Core Area [mm ²]	0.45	0.35	0.23	0.5	0.5	0.06
Power [mW]	14.48	45	6.7	56	16.5	12
FoMյ* [dB]	-252.8	-246.8	-253.0	-249.0	-250.2	-263

 $*FoM_{l} = 10 \log(jitter^{2} \cdot Power/1mw) dB$

FoM of State-of-the-Art PLLs

Outline

- Motivation and Background
- Proposed Integer-N TAPFD-based CPPLL
 - The concept of TAPFD
 - Challenge for the implementation of TAPFD
 - Overall structure of the Proposed PLL
- Measurement Results

Conclusion

Conclusion

A 25.8GHz integer-N PLL is prototyped in 65nm CMOS, featuring:

-60fs jitter, 14.48mW power and -252.8dB FoM_J

■A time-amplifier based PFD is proposed:

- The power-noise tradeoff of CP is broken
- Frequency detection capability is maintained for robust lock acquisition performance

■Class-F VCO with built-in tripler:

- Better Q-factor for fundamental LC tank, thus better PN
- Relax the operating frequency of divider